Generating new prions by targeted mutation or segment duplication.

نویسندگان

  • Kacy R Paul
  • Connor G Hendrich
  • Aubrey Waechter
  • Madison R Harman
  • Eric D Ross
چکیده

Yeasts contain various protein-based genetic elements, termed prions, that result from the structural conversion of proteins into self-propagating amyloid forms. Most yeast prion proteins contain glutamine/asparagine (Q/N)-rich prion domains that drive prion activity. Here, we explore two mechanisms by which new prion domains could evolve. First, it has been proposed that mutation and natural selection will tend to result in proteins with aggregation propensities just low enough to function under physiological conditions and thus that a small number of mutations are often sufficient to cause aggregation. We hypothesized that if the ability to form prion aggregates was a sufficiently generic feature of Q/N-rich domains, many nonprion Q/N-rich domains might similarly have aggregation propensities on the edge of prion formation. Indeed, we tested four yeast Q/N-rich domains that had no detectable aggregation activity; in each case, a small number of rationally designed mutations were sufficient to cause the proteins to aggregate and, for two of the domains, to create prion activity. Second, oligopeptide repeats are found in multiple prion proteins, and expansion of these repeats increases prion activity. However, it is unclear whether the effects of repeat expansion are unique to these specific sequences or are a generic result of adding additional aggregation-prone segments into a protein domain. We found that within nonprion Q/N-rich domains, repeating aggregation-prone segments in tandem was sufficient to create prion activity. Duplication of DNA elements is a common source of genetic variation and may provide a simple mechanism to rapidly evolve prion activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rearranged genomic RNA segments offer a new approach to the reverse genetics of rotaviruses.

Group A rotaviruses (RV), members of the Reoviridae family, are a major cause of infantile acute gastroenteritis. The RV genome consists of 11 double-stranded RNA segments. In some cases, an RNA segment is replaced by a rearranged RNA segment, which is derived from its standard counterpart by partial sequence duplication. We report here a reverse genetics system for RV based on the preferential...

متن کامل

Novel and recurrent PITX3 mutations in Belgian families with autosomal dominant congenital cataract and anterior segment dysgenesis have similar phenotypic and functional characteristics

BACKGROUND Congenital cataracts are clinically and genetically heterogeneous with more than 45 known loci and 38 identified genes. They can occur as isolated defects or in association with anterior segment developmental anomalies. One of the disease genes for congenital cataract with or without anterior segment dysgenesis (ASD) is PITX3, encoding a transcription factor with a crucial role in le...

متن کامل

An insertional translocation in neurospora that generates duplications heterozygous for mating type.

In strain T(I-->II)39311 a long interstitial segment is transposed from IL to IIR, where it is inserted in reversed order with respect to the centromere. In crosses of T x T essentially all asci have eight viable, black spores, and all progeny are phenotypically normal. When T(I-->II)39311 is crossed by Normal sequence (N), the expected duplication class is viable while the corresponding defici...

متن کامل

Searching for Factors that Distinguish Disease-Prone and Disease-Resistant Prions via Sequence Analysis

The exact mechanisms of prion misfolding and factors that predispose an individual to prion diseases are largely unknown. Our approach to identifying candidate factors in-silico relies on contrasting the C-terminal domain of PrP(C) sequences from two groups of vertebrate species: those that have been found to suffer from prion diseases, and those that have not. We propose that any significant d...

متن کامل

Escape from repeat-induced point mutation of a gene-sized duplication in Neurospora crassa crosses that are heterozygous for a larger chromosome segment duplication.

In Neurospora crassa the ability of an ectopic gene-sized duplication to induce repeat-induced point mutation (RIP) in its target gene was suppressed in crosses that were heterozygous for another larger chromosome segment duplication. Specifically, the frequency of RIP in the erg-3 gene due to a 1.3-kb duplication was reduced if the chromosome segment duplications Dp(IIIR > [I;II]) AR17, Dp(VIR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 112 28  شماره 

صفحات  -

تاریخ انتشار 2015